Jornada Técnica

"Análisis de la calidad, eliminación de impurezas y generación de biogás"

Irene Merino

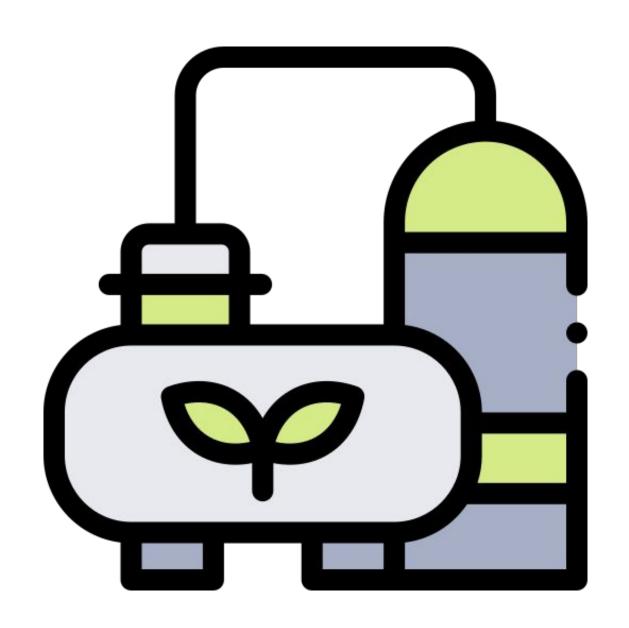
Pablo Piedras

AGUASRESIDUALES.INFO

Carlota Sánchez José M. del Arco

- 1. INTRODUCCIÓN
- 2. PARÁMETROS DE INTERÉS
- 3. TECNOLOGÍAS DE MEDIDA
- 4. NUESTRAS SOLUCIONES
- 5. CONCLUSIONES

1. INTRODUCCIÓN



¿Qué es el biogás?

Es producto de la descomposición, ya sea natural o provocada, de la materia orgánica en ausencia de oxígeno.

Es un gas combustible, formado típicamente por 50-70% CH₄, 30-45% CO₂, y otros gases minoritarios.

Es una fuente de energía 100% renovable, por lo que permite la reducción de la huella de Carbono.

Favorece la economía circular en determinadas industrias.

¿De dónde se obtiene?

De la biodegradación de la materia orgánica

- En vertederos o Landfills, a partir de RSU
- En EDARs, a partir de la digestión de lodos
- En Biorreactores, con sustratos variados
 - Fracción orgánica de RSU
 - Estiércol y purín de origen animal
 - Restos vegetales / bio-residuos
 - Residuos agroindustriales / agroalimentícios

Aprovechamiento

BÁSICAMENTE COMO COMBUSTIBLE

dado su alto contenido en CH₄

PCI de 6 - 7 KWh/Nm³ (vs 10 KWh/Nm³ del GN)

- Aprovechamiento térmico (secado, calefacción, ...)
- Generación eléctrica (motores / microturbinas)
- Movilidad (vehículos, transporte, ...)
- Obtención de otros combustibles de mayor valor (biometano, reformado a H₂, ...)

UPGRADING

o enriquecimiento de biogás, para obtener BIOMETANO:

- \Box Eliminación del biogás de gran parte del CO_2 y resto de impurezas, quedando únicamente el CH_4
- Aumenta el poder calorífico del biogás y permite cumplir requerimientos de calidad especiales (p.ej. inyección en red de GN)

En la situación actual (crisis climática + energética) su potencial se ha multiplicado

- ☐ Fuente de energía 100% renovable
- ☐ Menores emisiones de gases nocivos que otros carburantes
- ☐ Permite reducir la dependencia energética de combustibles fósiles
- ☐ Permite avanzar hacia un suministro eléctrico descentralizado

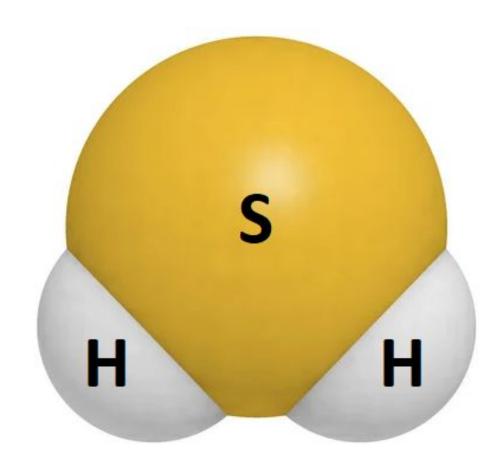
2. PARÁMETROS DE INTERÉS

Le confiere su valor como combustible

Valores típicos entre 50-70% CH₄

Además de ser una indicación del PCI, permite evaluar también rendimiento de la digestión (ratio CH_4 / CO_2)

* Importante alcanzar concentración mínima para motores (> 40%). En caso contrario habría que enriquecer



- Gas combustible, tóxico y de fuerte olor a huevo podrido.
- Presente habitualmente entre 500 5.000 ppm, hasta un 2%

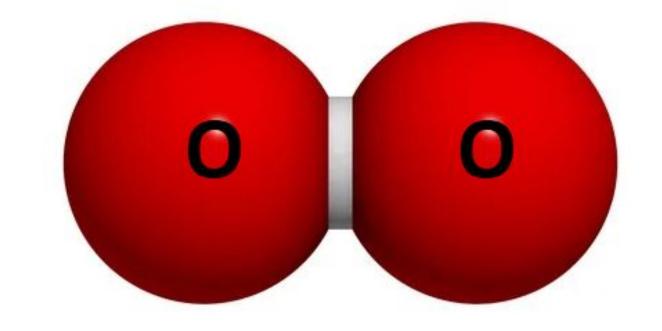
- Principal problema: CORROSIÓN
- Suelen emplearse sistemas para reducir su concentración en el Biogás (filtros de C activo, biofiltros, precipitación con FeCl₃, inyección O₂ ...)

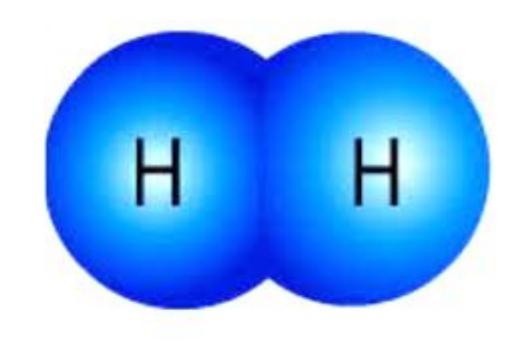
Es importante asegurarse que se encuentra en límites aceptables, para asegurar la integridad de la instalación

- quemadores
- motores
- conducciones

Su monitorización permite también controlar el funcionamiento de los sistemas de abatimiento.

Jornada Técnica




Otros gases de interés

No debería haber O₂ en el biogás

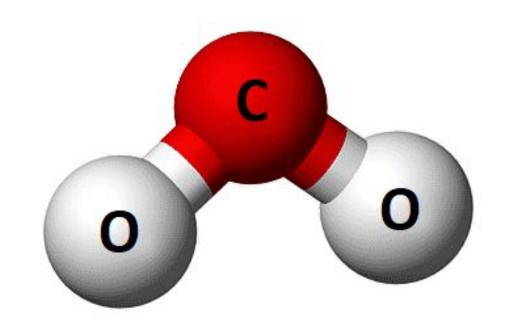
En ocasiones se inyecta O₂ (desulfuración)

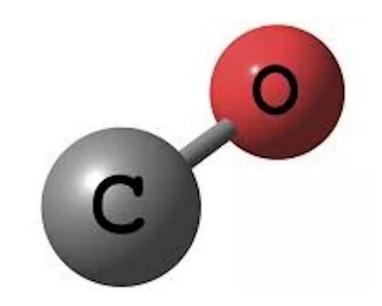
Monitorización del riesgo de explosión ($O_2 < 3\%$)

H₂ con bajo valor calórico, afecta al Índice de Wobbe

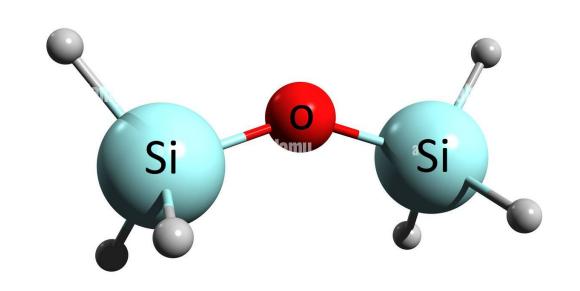
→ Control previo a inyección en red GN (max 5%)

Interesante también para ver la evolución del proceso de digestión (fermentación)





Otros gases de interés


El ratio CH₄ / CO₂ permite evaluar el rendimiento de la digestión.

El CO es indicativo de combustión latente / fuego subterráneo en landfills.

Los Siloxanos generan problemas por erosión e incrustaciones en motores, calderas, turbinas, ... y por tanto deberían ser eliminados del biogás.

Propiedades Térmicas

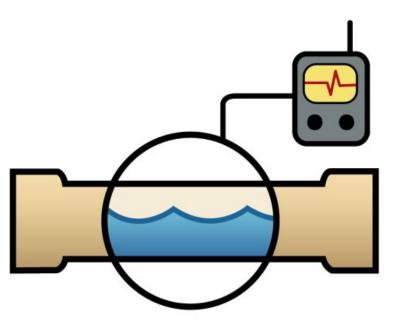
Poder calorífico (PCI y PCS)

- PC Superior= calor producido en combustión.
- PC Inferior = calor aprovechable (sin considerar energía de condensación del agua).

Índice de Wobbe (W.I.) = caudal calorífico que pasa por el orificio de un quemador.

- Caracteriza la intercambiabilidad de distintos combustibles en un mismo quemador.
- Permite calcular PC, conocida la densidad

$$IW = \frac{PC_3}{\sqrt{\rho}}$$



Otros aspectos importantes

- CAUDAL: NO solo importa la calidad, sinó también la CANTIDAD
 - O Preferible medida másica directa (mejor que volumétrica)
 - Los sistemas por deltaP no suelen funcionar bien.

- Detección de gases en ambiente por SEGURIDAD
 - Explosividad (CH₄)
 - Toxicidad (H₂S, NH3, CO)
- Control OLORES debido principalmente a H₂S y Mercaptanos
 - Monitorización para control de rendimiento / funcionamiento de sistemas de abatimiento

3. TECNOLOGÍAS DE MEDIDA



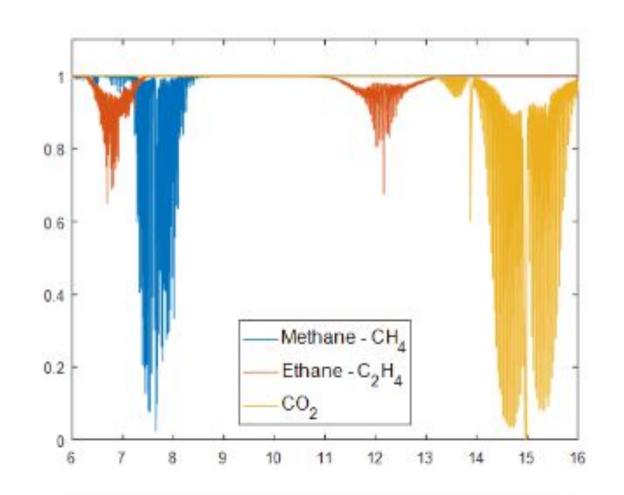
Sensores Eletroquímicos

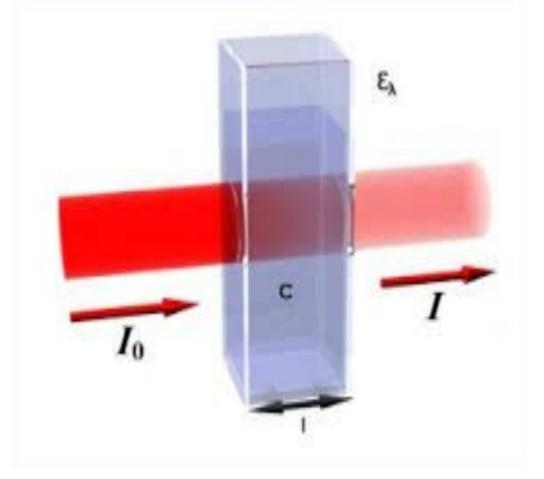
 Comparable a una pila; el gas oxida/reduce un electrodo, generando una corriente proporcional a su concentración

- Celda electrolítica formada por:
 - Electrodos (2 ó 3)
 - Membrana (controla la cantidad de muestra que difunde al interior)
 - Un electrolito (permite migración de iones entre electrodos)

- AsequiblesFáciles de usar

- Duración limitada
- Daños por sobre-exposición
- Regeneración / lavado para H₂S





Métodos ópticos

- Basados en la absorción de luz en frecuencias características de cada compuesto (UV, VIS, IR, ...)
- Múltiples variantes: fotómetro, espectómetro,
 UV-VIS, NDIR, FTIR, TDLS-láser, ...
- Análisis cuantitativo: concentración proporcional a absorción de luz, camino óptico y coeficiente característico del compuesto → Ley de Lambert Beer

Métodos ópticos

- Medida en continuo
- Rápida respuesta
- Gran número de compuestos
- Selectivos
- Robustos y fiables

- Sensibles a ensuciamiento (filtro previo)
- Construcción algo más compleja (que EQ)

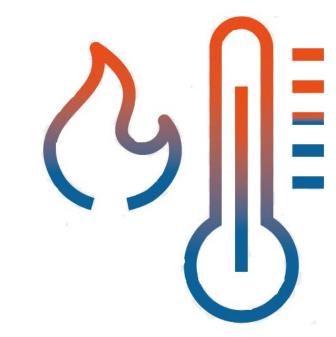
- Capacidad multiparámetro (FTIR, ...)
- Elevada estabilidad y selectividad (TDLS láser)

Cromatografía de gases

- Los distintos componentes de la muestra son separados y cuantificados independientemente.
- La muestra es inyectada sobre un gas portador inerte, pasando a través de una columna donde se retienen (adsorción) los distintos componentes, que son progresivamente liberados (elución), y cuantificados en un detector (TCD, FID, ...)

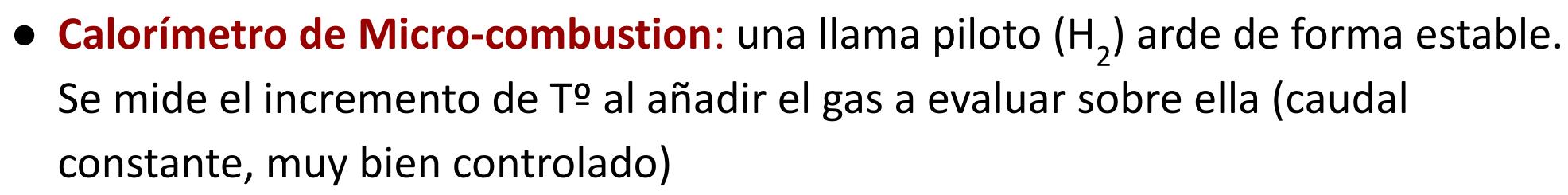
 Caracterización total de la muestra

- CAPEX y OPEX elevados
- Mantenimiento
- Medida discontinua



Métodos por combustión - PODER CALORÍFICO

 Bomba calorimétrica: se introduce el gas en un recipiente herméticamente cerrado, y se provoca la ignición (chispa) midiendo el cambio de Tº, que es proporcional al calor liberado por la reacción de oxidación o combustión.



Exactitud

Discontinuo (batch)

- Contínuo
- Rápido (segundos)
- Calibración universal

Métodos por combustión IND. WOBBE

- Basado en la demanda estequiométrica de O₂
 - El gas a medir se mezcla con aire en exceso (3 a 10 X) en condiciones controladas
 - La mezcla se oxida en cámara (combustión u oxid. catalítica)
 - Se mide el O₂ residual (sensor ZrO₂), para determinar la demanda estequiométrica de O₂, relacionada con el WI
- Si mediante otro módulo se determina la densidad del gas, podemos calcular PCS / PCI

- Contínuo
- Rápido (segundos)

- Más complejo que calorímetros
- Módulo externo para densidad

Tecnologías de análisis habituales -

	GC	IRs	UV	Laser	EQ	Combust
CH ₄						
CO ₂						
0 ₂						
H ₂						
H ₂ S						
Siloxanos						
WI						
PCI / PCS						

Criterios de selección

- Los usos del Biogás son variados, y por tanto lo serán también las necesidades en cuanto a determinación de su calidad
 - Para facturación, suele requerirse especiación y cuantificación por Cromatografía con posterior cálculo de PCS, IW, densidad ...
 - Para mediciones "internas" o parámetros para los que se requiera respuesta rápida podríamos ir a otros sistemas más directos
 - CH₄ (+ otros) para control digestión o motores
 - H₂S para protección de motores / turbinas
 - PCI para control de mezcla / enriquecimiento
 - **...**

4. NUESTRAS SOLUCIONES

Jornada Técnica on - fine aguasresiduales.info

Analizador MAMOS de MADUR

- Construcción modular
 - Capacidad hasta 6 sensores (NDIR, EQ, TCD, PID)
 - Multicanal, hasta 4 entradas de muestra
- Sistema de secado de muestra integrado (cooler)
- Gases típicos
 - CH₄, sensor NDIR
 - H₂S, sensor EQ en canal separado (sobre-exposición)
 - O₂, sensor EQ
 - o CO₂, sensor NDIR
 - H₂, sensor EQ

Analizador MAMOS de MADUR

- Disponible también para control de OLORES
 - H₂S, sensor EQ
 - NH₃, sensor EQ
 - Mercaptanos, sensor PID
- Ambos disponibles en versión PORTÁTIL
 - Capacidades equivalentes a los anteriores
 - Alimentación por baterías
 - Registrador de datos interno
 - Impresora integrada

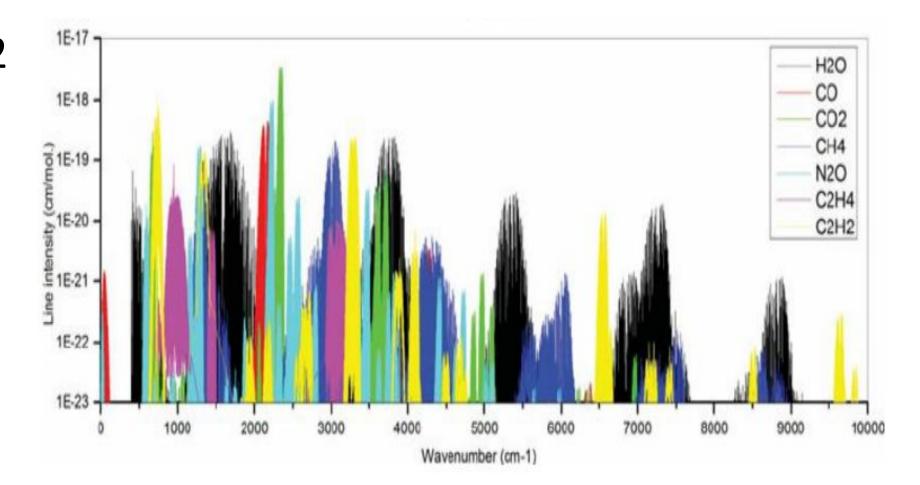
BIOMAT de MATELCO

- Apto para instalación en Zona ATEX
 - Sensores y transmisores EEx d
 - Caja eléctrica y mandos EEx d
 - Bomba de muestra EEx-e
- Separador previo de condensados
- Gases típicos
 - CH₄, sensor NDIR
 - H₂S, sensor EQ (lavado automático con aire)
 - O₂, sensor EQ

LASER GAS SP de NEO MONITORS

- Medida por Láser para H₂S, CH₄, ...
- Emisor / Receptor IN-SITU, sin tratamiento previo de muestra
- Medida instantánea (1 a 2 seg)
- Sensible y selectivo (sin interferencias)
- Tecnología altamente fiable y robusta
- SIN mantenimiento

Jornada Técnica on-line



T1000 de **TUNABLE**

- Espectrómetro IR por Filtro Fabry-Perot
- Análisis multicomponente de BIOMETANO a tiempo real
 - Medida de C1 a C5 + CO₂
 - Cálculo de
 - Poder calorífico
 - Número de Metano
 - Indice de Wobbe

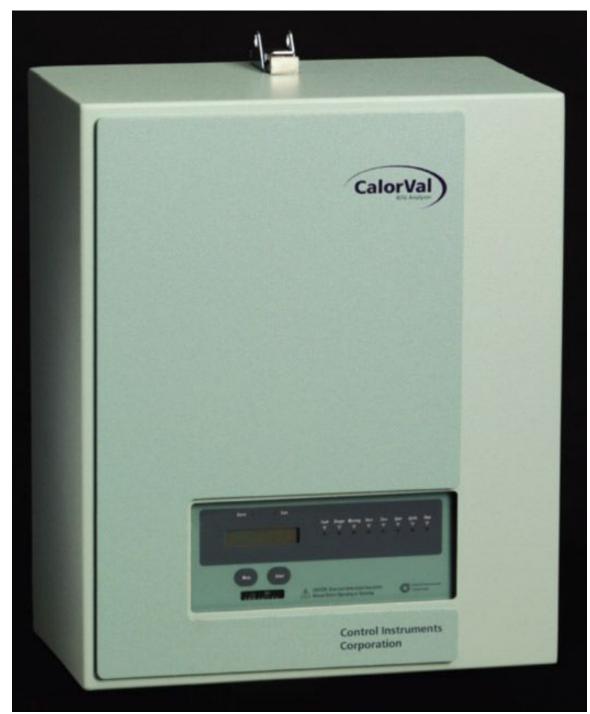
- Permite diagnóstico y reconfiguración remoto
- Robusto, insensible a vibraciones
- Mantenimiento muy sencillo

Jornada Técnica on – fint

TUNABLE

 Prestaciones similares a GC, pero con mayor rapidez, facilidad de uso y menores costes de operación y mantenimiento

C	T1000-20 NG Analyser		
Component	Range	Accuracy	
Methane	0 - 100%	0.5% Vol	
Ethane	0-20%	0.5% Vol	
Propane	0 - 20 %	0.5% Vol	
Iso-Butane	0-5%	0.2% Vol	
N-Butane	0-5%	0.2% Vol	
C5-total	0-2%	0.2% Vol	
Carbon dioxide	0 - 20 %	1% Vol	
Nitrogen	0-100%	Balance	
Calorific value (CV)	Accuracy 0.5%, according to ISO 69		
Methane number (MN)	According to customer specification		



Jornada Técnica

CALORVAL de Control Instruments

(Ex) ATEX

- Calorímetro de Micro Combustion
- Medida a tiempo real (respuesta < 10 seg.)
- No requiere bomba de aspiración
- Cámara de medida termostatizada
- Calibración universal: respuesta uniforme para la mayoría de gases

→ SIMPLE, ROBUSTO y FIABLE

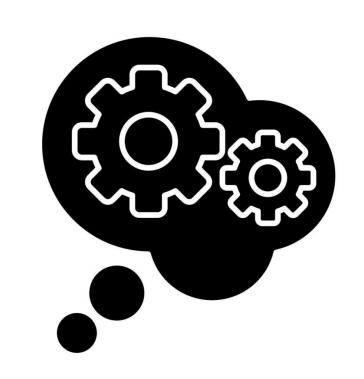
Caudalímetros MÁSICOS de Sierra Instr.

- Medida directa del CAUDAL MÁSICO
- QuadraTherm, sistema patentado con 4 sensores para la mejor precisión del mercado (hasta +/- 0,5% v.m.)
- Sensor sin deriva y con garantia de por vida
- Muy versátil; reconfigurable en campo
 - Cambio de gas (pre-programado) e incluso mezclas
 - Reajuste del diámetro de tubería
- Versión con acondicionador de flujo (requiere solo 1D tramo recto para instalación)

Jornada Técnica on-line

Detectores de Gas en ambiente

- Atmósfera potencialmente peligrosa.
 - CH₄ (riesgo explosión)
 - O H₂S, NH₃, CO (riesgo intoxicación)
 - Deficiencia O₂ (riesgo asfixia)
- Versiones:
 - o compacta (1 canal)
 - o con centralita (hasta 12 canales)



5. CONCLUSIONES

- Sector en crecimiento; fuente de energía renovable y limpia.
- La medida de la calidad del biogás es importante para:
 - Verificar el correcto funcionamiento de los digestores
 - Asegurar los requerimientos mínimos de calidad para los equipos que van a utilizar el Biogás
 - Muy importante para el UPGRADING (Biogás a Biometano)
- Escoger la mejor tecnología dependiendo del uso / propósito
- Importante conocer la cantidad = CAUDAL
- Matelco es Distribuidor y Servicio Técnico OFICIAL para España de todos los equipos aquí presentados

Muchas gracias por su atención

