TRANSPORTAR

WWW.SEWERVAC.ES

TRANSPORTE AGUAS RESIDUALES
EN PRESIÓN NEGATIVA

Exteriores – Urbanismo y medio ambiente

UNE-EN 16932-3

Interiores edificación
UNE-EN 12109

TRATAR.

WWW.OXIFUCH.COM

Modelización del sulfuro

Biorremediación

Oxigenación

TRATAMIENTOS
DEL AGUA Y DEL OLOR

PUERTO DE VALENCIA

9 KM 2-ESTACIONES

URB. MARXUQUERA GANDÍA (VCIA)

16 KM 5-ESTACIONES

POLG INDUSTRIAL ZALAIN (NAVARRA)

2 KM 1-ESTACIÓN

PARQUE NATURAL DEL SALER (VCIA)

1.8 KM 1 ESTACIÓN

CIUDAD DE VALENCIA.

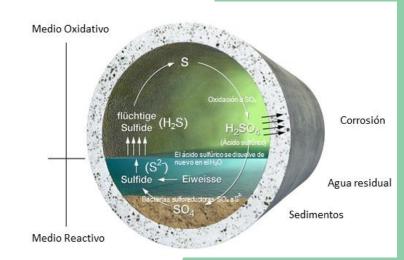
ETC...

LOS QUE CONFÍAN EN NUESTRO I + D

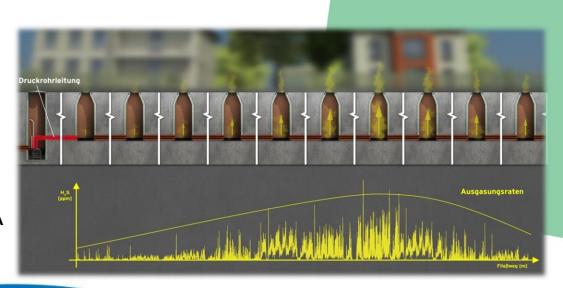
:

- GLOBAL OMNIUM
- NILSA AGUAS DE NAVARRA.
- PUERTOS DEL ESTADO.
- MINISTERIO MEDIO AMBIENTE.
- AQUALIA FCC
- GENERA-GRUPO FACSA
- ACCIONA AGUA.
- PUERTOS DEL ESTADO.
- AGUAS DE MURCIA.
- AGUAS DE HUELVA.

Saneamiento por vacío

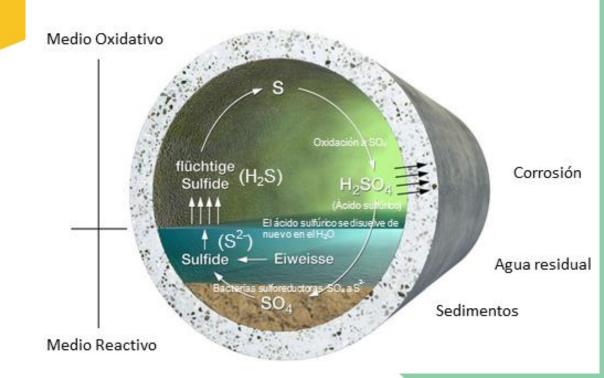


MODELACIÓN DEL SULFURO


- GALICIA
- ASTURIAS
- COSTA CDAD.VALENCIANA.
- CIUDAD DE VALENCIA
- CIUDAD DE MURCIA
- CATALUÑA.

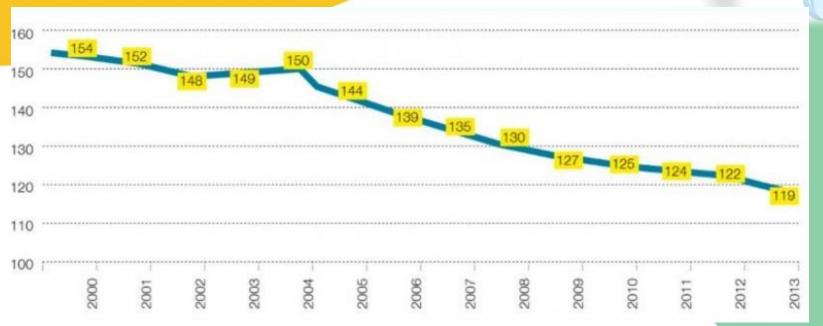
ALGUNOS CLIENTES:

- AQUAES.
- CADASA-ASTURIAS
- GLOBAL OMNIUM.
- AYUNTAMIENTO DE VALENCIA
- AGENCIA CATALANA DEL AGUA
- ETC...


Modelización del S² División de olores y corrosión

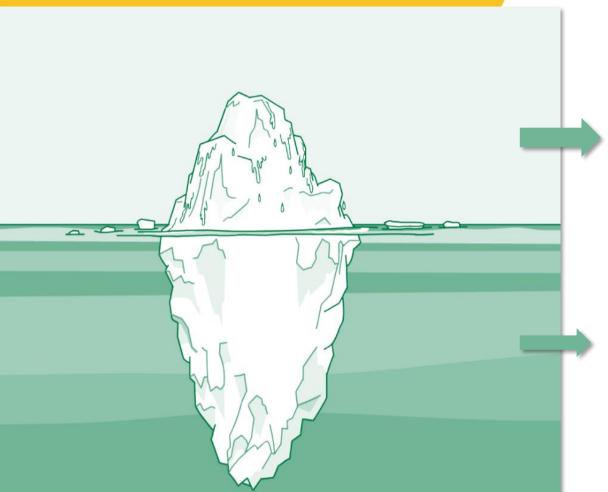
Conceptos básicos

- Contenido de azufre
- Temperatura
- Oxígeno
- Nitrato
- Biofilm
- pH
- Tiempos de retención



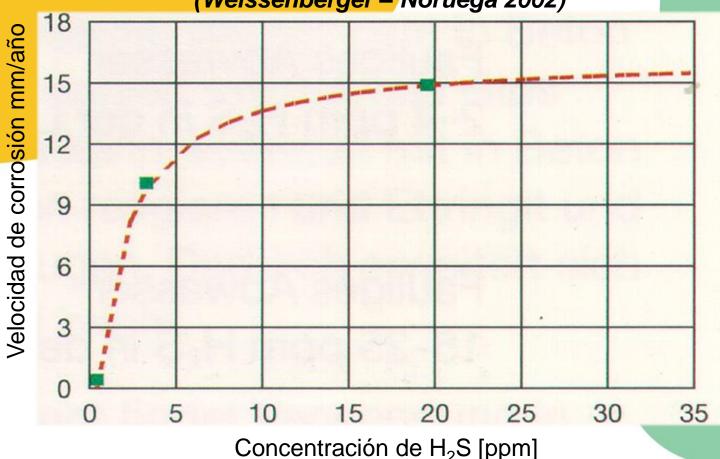
Conceptos básicos

Disminución del consumo de agua - Alicante


Fuente: Aquae

2000-2013 = 154L - 119L

OLOR = "ALARMA"



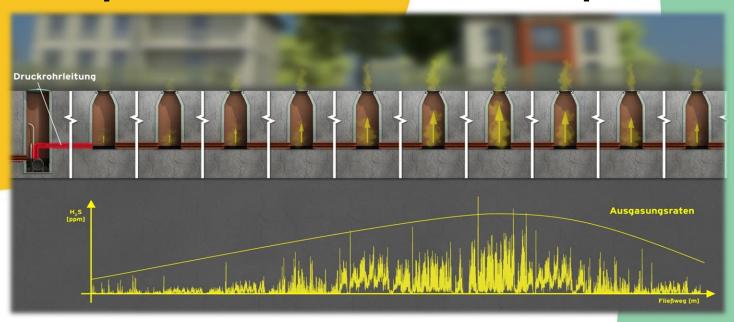
Velocidad de la corrosión, en función de la concentración de H2S

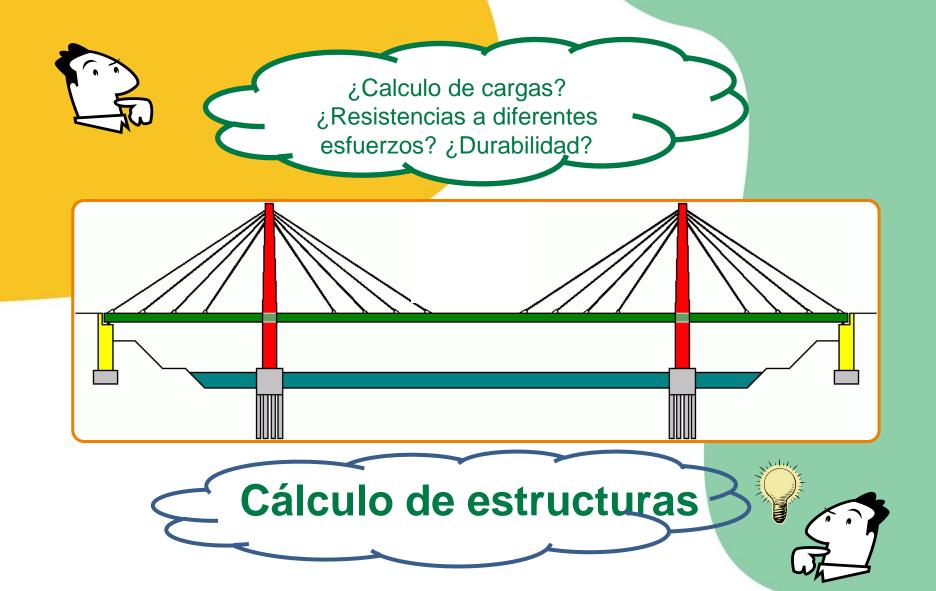
Concentración de H₂S [ppm]

Área del mediterráneo: Reducción media -> 35 años de vida útil.

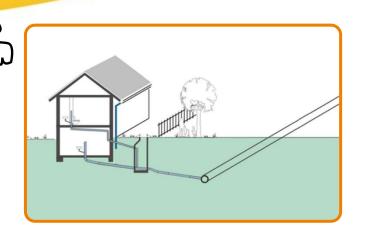
Corrosión biogénica

Corrosión en estaciones de bombeo biogénica en pozos




Emisiones de gas H₂S, después de cada tubería de impulsión

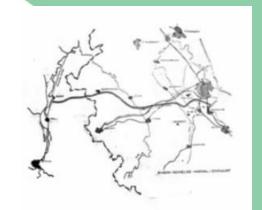
- Tuberías de impulsión \rightarrow anaerobia \rightarrow S²⁻ \rightarrow H₂S
- Sin turbulencia = H_2S es emanado entre 1-3 km tras punto de rotura
- Con turbulencia = H₂S es emanado inmediatamente
- El olor como indicador de corrosión biogénica.


Y TÚ...., ¿EN QUE TE BASAS PARA DECIDIR?

Modelización del H₂S vs Medición H₂S

¿Olor? ¿Corrosión? ¿Fiabilidad? ¿Eficacia? NO SEAS UN COPIA - PEGA

Modelización del sulfhídrico


¿Alguien sabe cuantas torres de desodorización sin mantener hay en España?

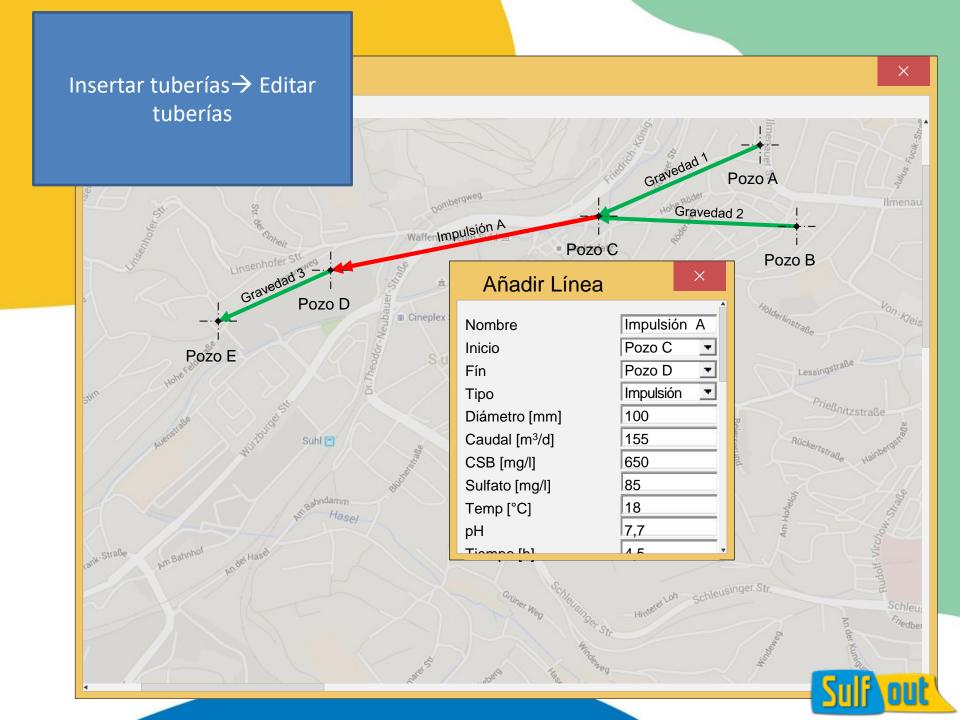
¿QUE HACE NUESTRO MODELO?

- Digitalización de sistema alcantarillado
- Simulación de procesos metabólicos complejos bajo diferentes situaciones.
- Cálculo del consumo de O2 y formación de H2S.
- Visualización de resultados para una mejor comprensión.
- Identificación de la emisión de olores y el desarrollo de corrosión biogénica en una etapa temprana.
- Optimización de sistemas de alcantarillado para operadores y planificadores.

Modelización del H₂S

Paso 1:
Determinar el área de actuación

Paso 4: Determinar las soluciones del problema



Paso 3: Modelación matemática

Paso 5: Calcular las soluciones más económicas

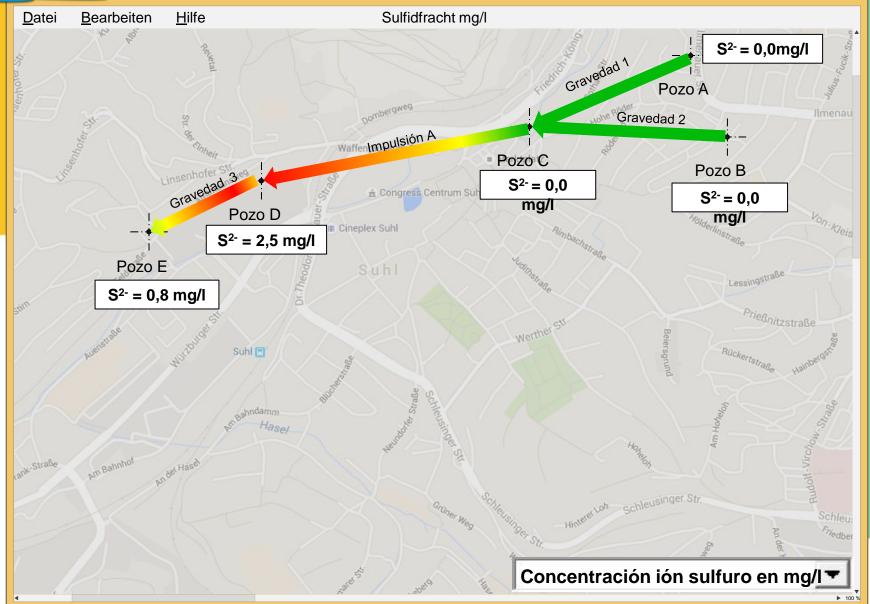
PARÁMETROS Y LEYENDAS INFORMACION GENERADA

LEYENDA			
TUBERÍAS A PRESIÓN			
NO.	NÚMERO DE SECCIÓN MODELIZADO		
DESDE	PUNTO DE PARTIDA DE LA SECCIÓN MODELIZADA		
HACIA	PUNTO DE LLEGADA DE LA SECCIÓN MODELIZADA		
LONGITUD	LONGITUD SECCIÓN MODELIZADA		
DIÁMETROS	DIÁMETRO DE LA SECCIÓN MODELIZADA		
CAUDAL	CAUDAL TOTAL EN LA SECCIÓN MODELIZADA		
DQO	DQO DE ENTRADA EN LA SECCIÓN MODELIZADA		
SO4	SULFATOS DE ENTRADA EN LA SECCIÓN MODELIZADA		
TEMP. AGUA	TEMPERATURA DEL AGUA RESIDUAL EN LA SECCIÓN MODELIZADA		
PH	PH DEL AGUA RESIDUAL EN LA SECCIÓN MODELIZADA		
TIEMPO RETENCIÓN Q	TIEMPO DE RETENCIÓN DEL CAUDAL DE ENTRADA EN LA SECCIÓN		
ENTRADA	MODELIZADA		
OXÍGENO DISUELTO	OXÍGENO DISUELTO EN LA SECCIÓN MODELIZADA		
VOLUMEN LÍNEA DE PRESIÓN	VOLUMEN DE LA LÍNEA DE PRESIÓN		
TIEMPO MEDIO LÍNEA	TIEMPO MEDIO QUE EN EL FLUIDO SE ENCUENTRA EN EL INTERIOR		
PRESIÓN	DE LA LÍNEA DE PRESIÓN		
TIEMPO RETENCIÓN CRÍTICO	TIEMPO A PARTIR DEL CUAL COMIENZA LA PRODUCCIÓN DE S ²⁻		
VELOCIDAD	VELOCIDAD DEL FLUIDO EN EL INTERIOR DE LA SECCIÓN		
	MODELIZADA		
TENSIÓN CIZALLADURA	TENSIÓN CORTANTE MEDÍA DE LA SECCIÓN MODELIZADA		
CREACIÓN SULFURO	CREACIÓN DE SULFURO MEDIA (S ² -) EN LA SECCIÓN MODELIZADA		
ENTRADA SULFURO	ENTRADA DE SULFURO MEDIA (S ²⁻) EN LA SECCIÓN MODELIZADA		
TOTAL SULFURO	SULFURO TOTAL (S ²⁻) EN LA SECCIÓN MODELIZADA		
CARGA SULFURO	CARGA DE SULFURO TOTAL (S ²⁻) EN LA SECCIÓN MODELIZADA		
AIRE NECESARIO PARA 0,1	CANTIDAD DE AIRE NECESARIO PARA BAJAR LA CONCENTRACIÓN DE		
PPM	H₂S EN ESTE PUNTO HASTA LOS 0.1 PPM		
MEDIA LONGITUD TRAMO	LONGITUD MEDIA DEL TRAMO SIGUIENTE		

LONGITUD DEL TRAMO SIGUIENTE	
NÚMERO DE POZOS EXISTENTE EN LA SECCIÓN MODELIZADA	
DISTANCIA DE EMISIÓN DEL SULFURO DE HIDRÓGENO	
¿SE ENCUENTRA EL COLECTOR AFECTADO?	
CONSUMO DEL OXÍGENO DISUELTO POR LAS BACTERIAS	
· ·	
COMENZARÁ CON LA REDUCCIÓN DEL SO ₄ , FORMAND	O S ²⁻
SULFURO RESIDUAL PRESENTE EN LA SECCIÓN MODELIZADA	
CARGA DE SULFURO EMITIDA CARGA DE SULFURO QUE SE HA EMITIDO AL EXTERIOR Y POR LO	
TANTO SE HA DESULFURADO.	
CANTIDAD DE AIRE NECESARIO PARA BAJAR LA CONCI	ENTRACIÓN DE
H ₂ S EN ESTE PUNTO HASTA LOS 0.1 PPM	
¿EXISTE EMISIÓN DE H₂S?	
	NÚMERO DE POZOS EXISTENTE EN LA SECCIÓN MODE DISTANCIA DE EMISIÓN DEL SULFURO DE HIDRÓGENO ¿SE ENCUENTRA EL COLECTOR AFECTADO? CONSUMO DEL OXÍGENO DISUELTO POR LAS BACTERIA SULFOREDUCTORAS, AL CONSUMIR TODO EL OXÍGENO COMENZARÁ CON LA REDUCCIÓN DEL SO4, FORMAND SULFURO RESIDUAL PRESENTE EN LA SECCIÓN MODEL CARGA DE SULFURO QUE SE HA EMITIDO AL EXTERIOR TANTO SE HA DESULFURADO. CANTIDAD DE AIRE NECESARIO PARA BAJAR LA CONCI

TUBERÍAS GRAVEDAD				
NO	NÚMERO DE SECCIÓN MODELIZADO			
DESDE	PUNTO DE PARTIDA DE LA SECCIÓN MODELIZADA			
HACIA	PUNTO DE LLEGADA DE LA SECCIÓN MODELIZADA			
LONGITUD [M]	LONGITUD SECCIÓN MODELIZADA			
DIÁMETROS [MM]	DIÁMETRO DE LA SECCIÓN MODELIZADA			
PENDIENTE	PENDIENTE MEDIA DE LA SECCIÓN MODELIZADA			
RUGOSIDAD	RUGOSIDAD MEDIA DE LA SECCIÓN MODELIZADA			
TEMPERATURA	TEMPERATURA MEDIA DEL AGUA RESIDUAL EN LA SECCIÓN			
	MODELIZADA			
CAUDAL	CAUDAL DE AGUA RESIDUAL EN LA SECCIÓN MODELIZADA			
CONCENTRACIÓN DE SULFURO	CONCENTRACIÓN DE SULFURO (S ²⁻) Y TIEMPO DE RETENCIÓN			
Y TIEMPO DE RETENCIÓN	HIDRÁULICO AL PRINCIPIO DE LA SECCIÓN MODELIZADA			
HIDRÁULICO AL PRINCIPIO DE				
LA SECCIÓN				
PH	PH DEL AGUA RESIDUAL EN LA SECCIÓN MODELIZADA			
DQO	DQO DE ENTRADA EN LA SECCIÓN MODELIZADA			
SO4	SULFATOS DE ENTRADA EN LA SECCIÓN MODELIZADA			
LLENADO	ALTURA DE LLENADO DE LA SECCIÓN MODELIZADA PARA EL CAUDAL			
	SIMULAADAO			
ANCHO SUPERFICIE DEL AGUA	ANCHO DE LA SUPERFICIE DEL AGUA EN EL INTERIOR DE LA SECCIÓN			
	MODELIZADA			
ALTURA SECCIÓN DE LLENADO	LLENADO MEDIO DE LA SECCIÓN MODELIZADA			
VELOCIDAD FLUIDO CON	VELOCIDAD DEL FLUIDO CUANDO SE ENCUENTRA CON LA SECCIÓN			
SECCIÓN LLENA	TOTALMENTE LLENA			
VELOCIDAD FLUIDO CON	VELOCIDAD REAL DEL FLUIDO CUANDO LA SECCIÓN SE ENCUENTRA			
SECCIÓN PARCIALMENTE	PARCIALMENTE LLENA			
LLENA				
TIEMPO RETENCIÓN CON	TIEMPO DE RETENCIÓN DEL FLUIDO CUANDO LA SECCIÓN ESTÁ	als out		
SECCIÓN PARCIALMENTE	PARCIALMENTE LLENA	out\		

ADSORCIÓN DE OXÍGENO EN	CANTIDAD DE OXÍGENO AMBIENTAL QUE PASA AL AGUA DEBIDO AL	
LA SUPERFICIE DEL AGUA	EFECTO DE LA AIREACIÓN	
LIMPIA A TEMPERATURA		
ACTUAL		
DÉFICIT DE OXÍGENO AGUA	DÉFICIT DE OXÍGENO DEBIDO AL EFECTO DE LA ALTITUD PARA AGUA	
LIMPIA ALTITUD	NO RESIDUAL	
FACTOR CORRECCIÓN DQO	FACTOR DE CORRECCIÓN DE LA DQO	
ADSORCIÓN DE OXÍGENO EN	CANTIDAD DE OXÍGENO AMBIENTAL QUE PASA AL AGUA DEBIDO AL	
LA SUPERFICIE DEL AGUA A	EFECTO DE LA AIREACIÓN A TEMPERATURA ESTÁNDAR DE 20C	
TEMPERATURA ESTÁNDAR		
FACTOR CORRECCIÓN	FACTOR DE CORRECCIÓN DE LA TEMPERATURA	
TEMPERATURA		
ADSORCIÓN DE OXÍGENO EN	CANTIDAD DE OXÍGENO AMBIENTAL QUE PASA AL AGUA DEBIDO AL	
LA SUPERFICIE DEL AGUA A	EFECTO DE LA AIREACIÓN A TEMPERATURA ACTUAL	
TEMPERATURA ACTUAL		
TENSIÓN CIZALLADURA	TENSIÓN CORTANTE MEDÍA DE LA SECCIÓN MODELIZADA	
PORCENTAJE BIOFILM BASADO	CANTIDAD DE BIOFILM PRESENTE EN LA SECCIÓN MODELIZADA	
DE LA PENDIENTE	TENIENDO EN CUENTA LA PENDIENTE MEDIA	
PRODUCCIÓN DE SULFURO	CANTIDAD DE IÓN SULFURO PRODUCIDO (S ²⁻) POR EFECTO DEL	
POR BIOFILM	BIOFILM	
PRODUCCIÓN SULFURO EN	PRODUCCIÓN TOTAL DE IÓN SULFURO EN AGUA RESIDUAL (S²-)	
AGUA RESIDUAL		
DEMANDA INSTANTÁNEA DE	DEMANDA INSTANTÁNEA DE OXIGENO PRODUCIDA POR LAS	
OXÍGENO PARA OXIDACIÓN	BACTERIAS SULFOREDUCTORAS PARA LA OXIDACIÓN BIOQUÍMICA	
BIOQUÍMICA		
DEMANDA DE OXÍGENO POR	DEMANDA DE OXIGENO POR MINUTO PRODUCIDA POR LAS	
MINUTO	BACTERIAS SULFOREDUCTORAS PARA LA OXIDACIÓN BIOQUÍMICA	
RATIO DE AIREACIÓN	RATIO DE AIREACIÓN EN LA SECCIÓN MODELIZADA	
CONCENTRACIÓN DE OXÍGENO	CONCENTRACIÓN DE OXÍGENO PRESENTE AL FINAL DE LA SECCIÓN	Id model
CALCULADA AL FINAL DE LA	MODELIZADA, TRAS EL EFECTO DE LAS BACTERIAS	

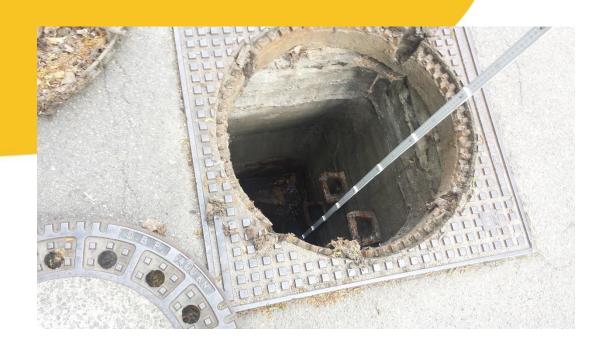

DEMANDA DIARIA DE	DEMANDA MEDIA DIARIA DE OXÍGENO EN LA SECCIÓN	
OXÍGENO	MODELIZADA	
ENTRADA DE SULFURO	CANTIDAD DE SULFURO QUE ENTRA EN LA SECCIÓN MODELIZADA	
DEPENDIENTE DEL AGUA	POR EFECTO DEL AGUA RESIDUAL	
RESIDUAL		
DESARROLLO DE SULFURO	CANTIDAD DE SULFURO DESARROLLADA EN EL INTERIOR DE LA	
PARA LA SECCIÓN	SECCIÓN MODELIZADA	
DISTANCIA DE EMISIÓN	DISTANCIA MEDIA DE EMISIÓN DE LOS GASES ODORÍFEROS	
	PRODUCIDOS POR EL IÓN SULFURO	
PREDICCIÓN EMISIÓN H2S	CARGA DE SULFHÍDRICO EMITIDA A LA ATMÓSFERA DEBIDO AL	
	EFECTO DE LA DESULFURACIÓN DEL IÓN SULFURO	
PREDICCIÓN DE LA NECESIDAD		
DE AIREACIÓN PARA AIRE CON		
H2S		
0,1 PPM		
CONCENTRACIÓN TOTAL	CONCENTRACIÓN DE IÓN SULFURO (S ²⁻) PRESENTE AL FINAL DE LA	
SULFURO FINAL DE LA	SECCIÓN	
SECCIÓN		

VISUALIZACION DE RESULTADOS

VISUALIZACION DE RESULTADOS

Odour / Sulfide concentration


strong above 2.0 mg/l
moderate 1.0 mg/l
low 0.5 mg/l
none 0.0 mg/l


Corrosion / Sulfide load

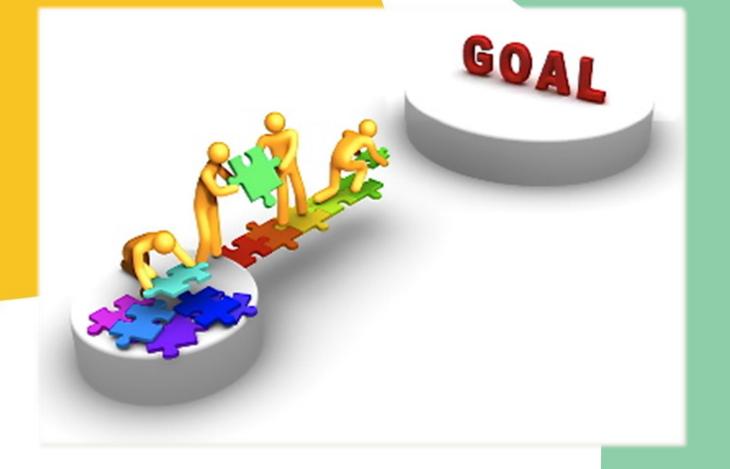
strong above 1,000 g/d
moderate low 200 g/d
none 0.0 g/d

CALIBRACION CADA 2' HASTA 1000 PPM

COMPLEMENTARIO

Modelización del H₂S

En fase de proyecto: Cálculo de las emisiones de olores y optimización de redes nuevas



Objetivos...

- Análisis de las causas y factores.
- ➤ Mediciones de H₂S.
- > Modelización de los parámetros influyentes.
- > Distintos escenarios.
- > Representación gráfica de los resultados.
- > Interpretación de los datos (estudio técnico detallado).

ESTRATEGÍA DEFINITIVA CONTRA LOS OLORES Y LA CORROSIÓN

Desafíos

¿Puedo probarlo antes de comprarlo?

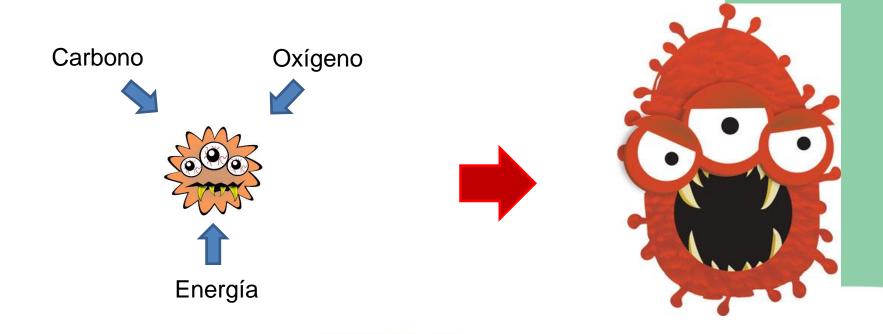
¿Cuánto me va a costar?

¿La tecnología puede solucionar mi problema?

¿Cuánto tiempo necesitaré para solucionarlo?

¿Qué solución es la adecuada para mi?

TEST MOVIL


Adición de nitratos- Mitigador

C + O + E

Carbono: Fuentes orgánicas o inorgánicas.

Oxígeno: Disuelto en el agua o de otros compuestos. Energía: Obtenida gracias a la presencia de oxígeno.

OTRAS SOLUCIONES MITIGADORAS O CORRECTIVAS

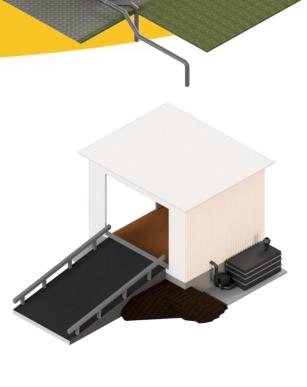
NONENE

- Reducción del olor mediante material filtrante autorregenerante.
- No es necesario cambiar el material del filtro.

- Recogedor de suciedad incluido en el suministro
- Bajo mantenimiento, se limpia solo con agua.
- Permeable al agua superficial

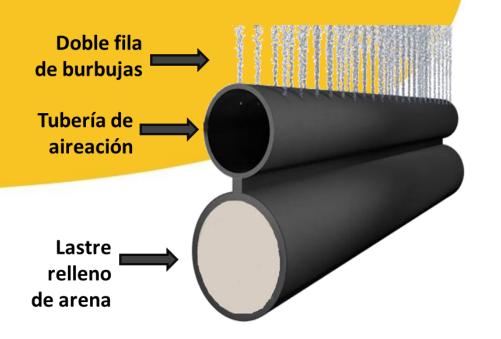
PROTECCION DE LA TAPA Y EL POZO.

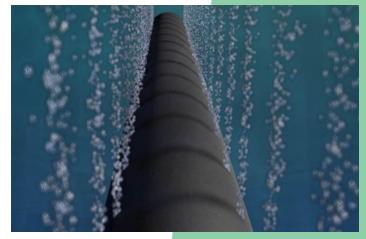
DIRIGIR RUTAS DEL H2S

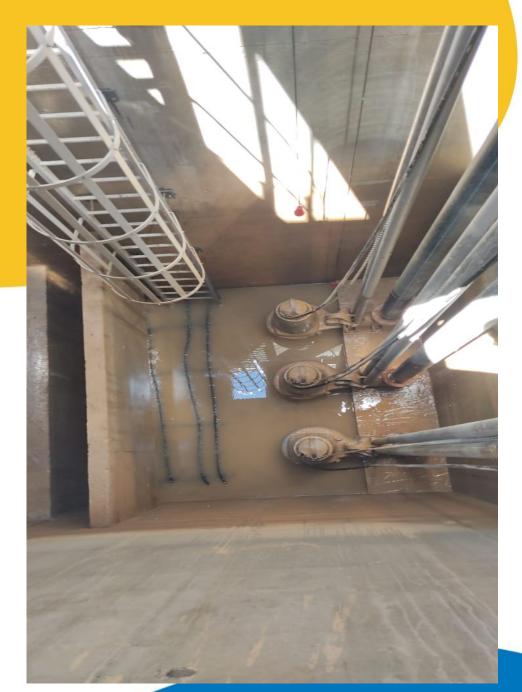


DORDETE

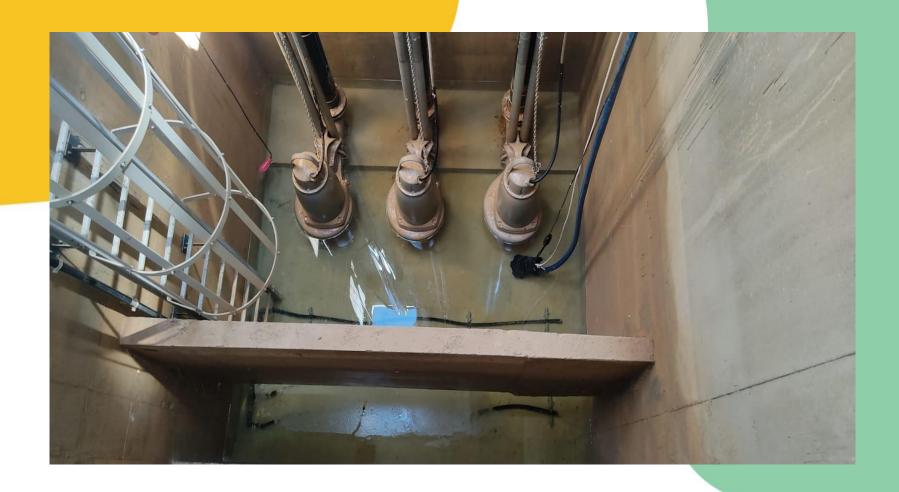
- Reducción del olor mediante material filtrante autorregenerante.
- No es necesario cambiar el material del filtro.
- Fácil instalación y desmontaje
- Recogedor de suciedad incluido en el suministro
- Bajo mantenimiento, se limpia solo con agua.
- Permeable al agua superficial


BIORREMEDIACIÓN


Producto Sewervac	Aplicación	Descripción
HIPO LL4450	Lixiviados	Eliminación biológica de materiales orgánicos parcialmente degradados y solubles en lixiviados de vertedero.
HIPO CLEANAGRI	Residuos animales	Acelera el ritmo de biodegradación, movilización y estabilización de los residuos animales.
HIPO CS4900	Productos químicos generales	Eliminación biológica de sustancias químicas complejas en efluentes procedentes de industrias químicas y farmacéuticas.
HIPO PS4700	Pozos de bombeo	Biodegradación de grasas y aceites en pozos de bombeo y estaciones elevadoras.
HIPO NT4500	Eliminación del amoníaco	Eliminación biológica del amoníaco por bacterias nitrificantes autótrofas.
HIPO HS4250	Alto contenido en almidón	Eliminación biológica del almidón en efluentes de la industria alimentaria.
HIPO SU4000	Puesta en marcha / resiembra	Puesta en marcha o resiembra de obras municipales de tratamiento, restaura el funcionamiento de la planta lo más rápido posible, aumentando la cantidad y calidad de la biomasa.
HIPO SO4600	Olores (sulfuros)	Oxidación biológica de sulfuros para producir productos finales inofensivos e inodoros.
HIPO SS4300	Surfactante	Tiene la capacidad de degradar todas las clases principales de compuestos surfactantes. Los distintos tipos de surfactantes son aniónicos, catiónicos, no iónicos y anfóteros.


SOLUCION CORRECTIVA

Sistema de aireación homogéneo OXI-FUCH


EN REDES Y CANTARAS DE BOMBEO.

MICRO BURBUJAS OXI-FUCH

Conclusiones

- La realidad de la problemática, dirige nuestro reto.
- Soluciones para colectores, bombeos y EDARs.
- Ningún proyecto es igual a otro, cada problema es diferente.

TRATAMIENTOS DEL AGUA Y DEL OLOR

WWW.OXIFUCH.COM

Modelización del sulfuro

Biorremediación

Oxigenación

GRACIAS

TRANSPORTE AGUAS RESIDUALES EN PRESIÓN NEGATIVA

WWW.SEWERVAC.ES

Exteriores

UNE-EN 16932-3

Interiores
UNE-EN 12109

RICARDO@SEWERVAC.ES

RICARDO@OXIFUCH.COM